IN SILICO DESIGN OF B-CELL EPITOPE BASED PEPTIDE VACCINE FOR ZIKA VIRUS

Firasti AN Sumadi, Annisa ZS Ariadne, Ahmad Shobrun Jamil, M. Artabah Muchlisin, Hidajah Rachmawati

Abstract


Zika virus infection attracted the attention of the medical community since it is transmitted by the Aedes mosquito and humans act as hosts. The disease affects fetal development and causes severe neurodevelopmental disorders, such as GBS (Guillain-Barre Syndrome), and CZS (Congenital Zika Syndrome) in pregnant women, including congenital microcephaly, and fetal death. Therefore, a vaccine is needed for prevention. Epitope-based peptide vaccines have advantages in terms of both selectivity and safety. The use of computational methods is a cost-efficient way of developing vaccines. This research aims to look at conserved areas and see the phylogenetic tree of the zika virus E protein sequences obtained from various countries, to see the most immunogenic epitope notifications of the ZIKV E protein sequence using the in-silico method, to see the potential for the most immunogenic epitopes of protein sequences. Zika virus as a vaccine candidate through the use of in silico. This study was using a descriptive observational study using in-silico tools for Zika virus peptide vaccine candidates. Some software and websites that were used are MEGA-X, IEDB, VaxiJen 2.0, BLASTp NCBI. From the 41 sequences that have been collected, 3 epitope candidates had antigenic properties and also passed the similarity test so the potential to develop a peptide vaccine; SLGLDCE, ETDENRAKVEVTPNSPRAEATLG, and AHAKRQ.

 

 

Keywords: Vaccine, Peptide, Epitope, Zika Virus, In Silico


Full Text:

PDF

References


Duong, V., Dussart, P., & Buchy, P. (2017). Zika virus in Asia. International Journal of Infectious Diseases, 54, 121–128. https://doi.org/10.1016/j.ijid.2016.11.420

Pattnaik, A., Sahoo, B. R., & Pattnaik, A. K. (2020). Current Status of Zika Virus Vaccines : Successes and Challenges. 1–19. https://doi.org/10.3390/vaccines8020266

Sirohi, D., & Kuhn, R. J. (2018). Zika Virus Structure , Maturation , and Receptors. 216(February), 935–944. https://doi.org/10.1093/infdis/jix515

Chambers, M. T., Schwarz, M. C., Sourisseau, M., Gray, E. S., & Evans, M. J. (2018). Downloaded from http://jvi.asm.org/ on July 6 , 2018 by TUFTS UNIV LIBRARIES Downloaded from http://jvi.asm.org/ on July 6 , 2018 by TUFTS UNIV LIBRARIES. July, 212–241. https://doi.org/10.1128/JVI.00505-18

Leonhard, S. E., Mandarakas, M. R., Gondim, F. A. A., Bateman, K., Ferreira, M. L. B., Cornblath, D. R., Doorn, P. A. Van, Willison, H. J., & Jacobs, B. C. (2019). Diagnosis and management of. Nature Reviews Neurology. https://doi.org/10.1038/s41582-019-0250-9

Cowan, J. B. (1993). Epidemiology update. Journal of Occupational Medicine, 35(9), 892. https://doi.org/10.1097/00043764-199309000-00011

Noorbakhsh, F., Abdolmohammadi, K., Fatahi, Y., Dalili, H., Rasoolinejad, M., Rezaei, F., Salehi-Vaziri, M., Shafiei-Jandaghi, N. Z., Gooshki, E. S., Zaim, M., & Nicknam, M. H. (2019). Zika virus infection, basic and clinical aspects: A review article. Iranian Journal of Public Health, 48(1), 20–31. https://doi.org/10.18502/ijph.v48i1.779

Gautam Rawal, Sankalp Yadav, R. K. (2016). Zika virus: An overview. Www.Http://Www.Jfmpc.Com/. https://doi.org/10.4103/2249-4863.197256

Manangeeswaran, M., Kielczewski, J. L., Sen, H. N., Xu, B. C., Ireland, D. D. C., McWilliams, I. L., Chan, C. C., Caspi, R. R., & Verthelyi, D. (2018). ZIKA virus infection causes persistent chorioretinal lesions article. Emerging Microbes and Infections, 7(1). https://doi.org/10.1038/s41426-018-0096-z

BPOM. (2015). Virus Zika dan Penanganannya. Http://Pionas.Pom.Go.Id. http://pionas.pom.go.id/info-bpom/virus-zika-dan-penanganannya#:~:text=Penanganan awal tanpa obat untuk,dilakukan pengompresan dengan handuk hangat.

Poland, G. A., Ovsyannikova, I. G., & Kennedy, R. B. (2019). Zika Vaccine Development: Current Status. Mayo Clinic Proceedings, 94(12), 2572–2586. https://doi.org/10.1016/j.mayocp.2019.05.016

Makhluf, H., & Shresta, S. (2018). Development of zika virus vaccines. Vaccines, 6(1), 1–9. https://doi.org/10.3390/vaccines6010007

Manangeeswaran, M., Kielczewski, J. L., Sen, H. N., Xu, B. C., Ireland, D. D. C., McWilliams, I. L., Chan, C. C., Caspi, R. R., & Verthelyi, D. (2018). ZIKA virus infection causes persistent chorioretinal lesions article. Emerging Microbes and Infections, 7(1). https://doi.org/10.1038/s41426-018-0096-z

Marshall, J. S., Warrington, R., Watson, W., & Kim, H. L. (2018). An introduction to immunology and immunopathology. Allergy, Asthma and Clinical Immunology, 14(s2), 1–10. https://doi.org/10.1186/s13223-018-0278-1

McDonald, J. H., and Kreitman, M. (1991). © 19 9 1 Nature Publishing Group 그라첼꺼. Nature, 368, 444–446.

Mulyawati, C., Salmawati, S., Subianto, M., & Wafdan, R. (2017). Teaching Media Development of Mathematic in the Materials Trigonometry Sum and Two Angles Difference By Using Gui Matlab. Jurnal Natural, 17(2), 69. https://doi.org/10.24815/jn.v0i0.7032

Istyastono, E. P. (2020). No Title. In www.lipi.go.id. http://www.komputasi.lipi.go.id/utama.cgi?artikel&1324087835

Kolaskar, A. S., & Tongaonkar, P. C. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters, 276(1–2), 172–174. https://doi.org/10.1016/0014-5793(90)80535-Q

Emini, E. A., Hughes, J. V, Perlow, D. S., & Boger, J. (1985). Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of Virology, 55(3), 836–839. https://doi.org/10.1128/jvi.55.3.836-839.1985

Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(June 2014). https://doi.org/10.1186/1471-2105-8-4

Adianingsih, O. R., & Kharisma, V. D. (2019). Study of B cell epitope conserved region of the Zika virus envelope glycoprotein to develop multi-strain vaccine. Journal of Applied Pharmaceutical Science, 9(1), 98–103. https://doi.org/10.7324/JAPS.2019.90114

Lanciotti, R. S., Lambert, A. J., Holodniy, M., Saavedra, S., & Castillo, C. (2016). Lanciotti 2016 EID Zika phylogeny. Emerging Infectious Diseases, 22(5), 2015–2017.

Id, M. K. B., Collette, N. M., Coffey, L. L., Rompay, K. K. A. Van, Hwang, M. H., Id, J. B. T., Allen, J. E., & Zemla, A. T. (2019). Multiscale analysis for patterns of Zika virus genotype emergence , spread , and consequence. https://doi.org/10.1371/journal.pone.0225699

Bauer, A., Podola, L., Mann, P., Missanga, M., Haule, A., Sudi, L., Nilsson, C., Kaluwa, B., Lueer, C., Mwakatima, M., Munseri, P. J., Maboko, L., Robb, M. L., Tovanabutra, S., Kijak, G., Marovich, M., McCormack, S., Joseph, S., Lyamuya, E., … Geldmacher, C. (2017). Preferential Targeting of Conserved Gag Regions after Vaccination with a Heterologous DNA Prime-Modified Vaccinia Virus Ankara Boost HIV-1 Vaccine Regimen. Journal of Virology, 91(18). https://doi.org/10.1128/jvi.00730-17

Smith, D. A., & Germolec, D. R. (1999). Introduction to immunology and autoimmunity. Environmental Health Perspectives, 107(SUPPL. 5), 661–665. https://doi.org/10.1289/ehp.99107s5661

Pilkington, E. H., Suys, E. J. A., Trevaskis, N. L., Wheatley, A. K., Zukancic, D., Algarni, A., Al-Wassiti, H., Davis, T. P., Pouton, C. W., Kent, S. J., & Truong, N. P. (2021). From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomaterialia, 131, 16–40. https://doi.org/10.1016/j.actbio.2021.06.023




DOI: http://dx.doi.org/10.36465/jop.v5i1.880

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Firasti AN Sumadi, Annisa ZS Ariadne, Ahmad Shobrun Jamil, M. Artabah Muchlisin, Hidajah Rachmawati

p-ISSN: 2620-8563; e-ISSN: 2621-1521


Index:

RJI Main
logo