POTENTIAL OF ANTI-INFLAMMATORY COMPOUNDS FROM SOURSOP LEAVES (Annona muricata L.) ON COX-2 ENZYME: IN SILICO

Authors

  • Syaiful Prayogi Program Studi Farmasi, Fakultas Sains dan Teknologi, Universitas Peradaban, Indonesia https://orcid.org/0000-0002-6140-6480
  • Teguh Hary Kartono Program Studi Farmasi Fakultas Sains dan Teknologi Universitas Peradaban, Indonesia
  • Luthfi Hidayat Maulana Program Studi Farmasi Fakultas Sains dan Teknologi Universitas Peradaban, Indonesia
  • Miftahul Saldi Program Studi Farmasi Fakultas Sains dan Teknologi Universitas Peradaban, Indonesia
  • Yulita Amelia Program Studi Farmasi Fakultas Sains dan Teknologi Universitas Peradaban, Indonesia

DOI:

https://doi.org/10.36465/jkbth.v26i1.1548

Keywords:

Annona muricata, flavonoid, inflamasi, molecular docking

Abstract

Inflammation is still a major cause of death in the world, especially in tropical regions (including Indonesia). The use of non-steroidal anti-inflammatory drugs (NSAIDs) has many side effects and is even toxic. Efforts to find drugs with low toxic effects require long stages and high costs. This effort can be accelerated with a computational approach in the early stages of drug development through the CADD technique by minimizing the risk of failure in later stages. The protein that plays a role in delaying inflammation is the cyclooxygenase (COX) enzyme. Inhibition of COX-2 has much lower side effects than inhibition of COX-1. COX-2 is induced by inflammatory stimuli expressed in synovial cells, leukocytes, fibroblasts, and macrophages, therefore becoming one of the target proteins in inflammation. Natural compounds of the phenolic, flavonoid, and alkaloid groups have been reported to have potential as anti-inflammatories. Soursop leaves are known to be rich in flavonoids. The empirical efficacy of soursop leaves (Annona muricata L.) has been known by the Indonesian people in the treatment of rheumatism or rheumatoid arthritis, anti-inflammatory, antipyretic, and analgesic. This study was conducted in silico with a molecular docking approach using iGemDock v2.1 software. The binding between ligand-target (COX enzyme) was evaluated using Discovery Studio Visualizer. The results showed that all test compounds inhibited COX-2, the isohamnetin 3 robinobioside compound has the potential to be a selective inhibitor of COX-2 when compared to other test compounds and with a reference drug (ibuprofen).

References

Abd Razik, B. M., Ezzat, M. O., & Yusufzai, S. K. (2020). Molecular Modelling, Drug Design and Binding Evaluation of New Celecoxib Derivatives as Cyclooxygenase-2 Inhibitors. Pakistan Journal of Medical and Health Sciences, 14(3), 983–988.

Adriani. (2018). Prediksisenyawa Bioaktif dari Tanaman Sanrego (Lunasia amara Blanco) Sebagai Inhibitor Enzim Siklooksigenase-2 (COX-2) melalui Pendekatan Molecular Docking. Jurnal Ilmiah Pena, 1(1), 6. https://doi.org/https://doi.org/10.51336/jip.v10i1.128

Ahsana, D., Andika, A., & Nashihah, S. (2021). Molecular Docking Study of Flavonoid Compounds in The Guava Leaves (Psidium Guajava L.) Which Has Potential as Anti-Inflammatory COX-2 Inhibitors. Lumbung Farmasi: Jurnal Ilmu Kefarmasian, 2(2), 67. https://doi.org/10.31764/lf.v2i2.5487

Amrulloh, F. M., & Utami, N. (2016). Hubungan Konsumsi OAINS terhadap Gastritis The Relation of NSAID Consumption to Gastritis. Majority, 5, 18–21.

Böhm, H.-J., & Schneider, G. (2003). Protein-ligand interactions from molecular recognition to drug design. Wiley-VCH.

Bulusu, G., & Desiraju, G. R. (2020). Strong and Weak Hydrogen Bonds in Protein–Ligand Recognition. Journal of the Indian Institute of Science, 100(1), 31–41. https://doi.org/10.1007/S41745-019-00141-9

Dinata, D. I., Suryatno, H., Musfiroh, I., & Suherman, S. E. (2014). Simulasi Docking Molekuler Senyawa Xanthorrhizol sebagai Antiinflamasi terhadap Enzim COX-1 dan COX-2 Molecular Docking Simulation of Xanthorrhizol Compounds Derived from Temulawak as Antiinflammatory on Enzymes COX-1 and COX-2. Ijpst, 1(1), 7–13.

Fleit, H. B. (2023). Chronic Inflammation. In Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms (pp. 300–314). Elsevier Inc. https://doi.org/10.1016/B978-0-12-386456-7.01808-6

Frimayanti, N., Djohari, M., & Khusnah, A. N. (2021). Molekular Docking Senyawa Analog Kalkon sebagai Inhibitor untuk Sel Kanker Paru-Paru A549. Jurnal Ilmu Kefarmasian Indonesia, 19(1), 87. https://doi.org/10.35814/jifi.v19i1.765

Gunawan, I. P. W., & Santoso, P. (2021). Uji Aktivitas Antiinflamasi serta Toksisitas Senyawa Peristrophine terhadap Reseptor Prostaglandin Sintase 2 (PTGS2) secara In Silico. Usadha: Jurnal …, 2(1).

Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial. The Scripps Research Institute Molecular, December, 32.

Itoh, Y., Nakashima, Y., Tsukamoto, S., Kurohara, T., Suzuki, M., Sakae, Y., Oda, M., Okamoto, Y., & Suzuki, T. (2019). N+-C-H···O Hydrogen bonds in protein-ligand complexes. Scientific Reports, 9(1). https://doi.org/10.1038/S41598-018-36987-9

Justino, A. B., Miranda, N. C., Franco, R. R., Martins, M. M., Silva, N. M. da, & Espindola, F. S. (2018). Annona muricata Linn. Leaf As A Source Of Antioxidant Compounds With In Vitro Antidiabetic And Inhibitory Potential Against Α-Amylase, Α-Glucosidase, Lipase, Non-Enzymatic Glycation And Lipid Peroxidation. Biomedicine and Pharmacotherapy, 100(January), 83–92. https://doi.org/10.1016/j.biopha.2018.01.172

Khalil, M., Amin, M., & Lukiati, B. (2020). Analisis Potensi Senyawa Repensol Sebagai Kandidat Inhibitor Replikasi Virus Hepatitis B Secara In Silico. 1–6.

Klebe, G. (2013). Protein–Ligand Interactions as the Basis for Drug Action. In Drug Design (pp. 61–88). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-17907-5_4

Lee, C. H., Lee, T. H., Ong, P. Y., Wong, S. L., Hamdan, N., Elgharbawy, A. A. M., & Azmi, N. A. (2021). Integrated ultrasound-mechanical stirrer technique for extraction of total alkaloid content from Annona muricata. Process Biochemistry, 109(July), 104–116. https://doi.org/10.1016/j.procbio.2021.07.006

Luiza, A., Cruz, C., Carolina, A., Tadeu, V., Nunes, B. V., Ribeiro, L. V., Dias, V., Silva, M., Weichert, R. F., Cardoso, A., Filha, C., Paula, F. De, Maria, I., Sousa, N. De, Manuel, R., Boavida, D. S., Santos, P. B., Linhares, R., Araújo, B. De, … Melo, F. (2022). An Integrative Approach to the Flavonoid Profile in Some Plants ’ Parts of the Annona Genus.

Miladiyah, I., Jumina, J., Haryana, S. M., & Mustofa, M. (2017). in Silico Molecular Docking of Xanthone Derivatives As Cyclooxygenase-2 Inhibitor Agents. International Journal of Pharmacy and Pharmaceutical Sciences, 9(3), 98. https://doi.org/10.22159/ijpps.2017v9i3.15382

N Baker, B. E. (2006). 22.2. Hydrogen bonding in biological macromolecules.

Pace, C. N., Fu, H., Fryar, K. L., Landua, J., Trevino, S. R., Shirley, B. A., Hendricks, M. M. N., Iimura, S., Gajiwala, K., Scholtz, J. M., & Grimsley, G. R. (2011). Contribution of Hydrophobic Interactions to Protein Stability. Journal of Molecular Biology, 408(3), 514. https://doi.org/10.1016/J.JMB.2011.02.053

Panigrahi, S. K., & Desiraju, G. R. (2007). Strong and weak hydrogen bonds in the protein–ligand interface. Proteins: Structure, Function, and Bioinformatics, 67(1), 128–141. https://doi.org/10.1002/PROT.21253

Patrick, G. L. (2013). An Introduction to Medicinal Chemistry Fifth Edition. In Oxford University Press (5th Ed). Oxford. https://doi.org/10.1016/0307-4412(76)90096-0

Placha, D., & Jampilek, J. (2021). Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems. Pharmaceutics, 13(1), 1–27. https://doi.org/10.3390/pharmaceutics13010064

Rezki, M. N., Andika, & Rahmawati. (2022). Studi Penambatan Molekuler Senyawa Metabolit Sekunder Buah Semangka (Citrullus lanatus) yang Berpotensi sebagai Anti Inflamasi melalui Inhibisi COX-2. Medical Sains : Jurnal Ilmiah Kefarmasian, 7(3), 609–620. https://doi.org/10.37874/ms.v7i3.341

Ribeiro, D., Proença, C., Varela, C., Janela, J., Tavares da Silva, E. J., Fernandes, E., & Roleira, F. M. F. (2019). New Phenolic Cinnamic Acid Derivatives as Selective COX-2 Inhibitors. Design, Synthesis, Biological Activity and Structure-Activity Relationships. Bioorganic Chemistry, 91. https://doi.org/10.1016/j.bioorg.2019.103179

Saputri, K. E., Fakhmi, N., Kusumaningtyas, E., Priyatama, D., & Santoso, B. (2016). Docking Molekular Potensi Anti Diabetes Melitus Tipe 2 Turunan Zerumbon sebagai Inhibitor Aldosa Reduktase dengan Autodock-Vina. Chimica et Natura Acta, 4(1), 16–20. https://doi.org/10.24198/CNA.V4.N1.10443

Sari, I. W., Junaidin, J., & Pratiwi, D. (2020). Studi Molecular Docking Senyawa Flavonoid Herba Kumis Kucing (Orthosiphon stamineus B.) pada Reseptor a-Glukosidase sebagai Antidiabetes Tipe 2. Jurnal Farmagazine, 7(2), 54. https://doi.org/10.47653/farm.v7i2.194

Sharp, K. A. (2006). 22.3. Electrostatic interactions in proteins.

Siswandono & Soekardjo, B. (2017). Kimia Medisinal (Edisi 2). Airlangga University Press.

WHO. (2023). Rheumatoid Arthritis. Https://Www.Who.Int/News-Room/Fact-Sheets/Detail/Rheumatoid-Arthritis.

Downloads

Published

2026-02-20

How to Cite

Prayogi, S., Kartono, T. H., Maulana, L. H., Saldi, M., & Amelia, Y. (2026). POTENTIAL OF ANTI-INFLAMMATORY COMPOUNDS FROM SOURSOP LEAVES (Annona muricata L.) ON COX-2 ENZYME: IN SILICO. Jurnal Kesehatan Bakti Tunas Husada: Jurnal Ilmu-Ilmu Keperawatan, Analis Kesehatan Dan Farmasi, 26(1), 18–28. https://doi.org/10.36465/jkbth.v26i1.1548

Issue

Section

Artikel

Citation Check

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.