LITERATURE REVIEW: SENYAWA BIOAKTIF DAN EFEK FARMAKOLOGIS SECARA MOLEKULER DARI PROPOLIS
Abstract
ABSTRACT
Propolis is a by-product, namely a resinous substance produced by honey bees that comes from various plant sources. Propolis has been widely used since ancient times as an alternative complementary medicine for various acute and chronic diseases. Over time, many studies related to propolis have been carried out to analyze the effect of propolis. This literature review aims to describe the various bioactive compounds contained in propolis and how their pharmacological effects molecularly. This literature review was conducted using the PubMed database, with the keywords “bioactive molecules”, “molecular mechanisms” and “propolis”. By using the exclusion criteria, that is, articles not using English, not published in the last ten years (2013-2023), literature review, and clinical studies, 171 articles were obtained. Re-screening resulted in 28 articles that discussed the bioactive compounds and the molecular mechanisms of propolis. The results of the literature review show that the main bioactive compounds in propolis are polyphenols, namely flavonoid compounds, including chrysin, galangin, pinocembrin, and non-flavonoid phenolic acids compounds including caffeic acid, p-coumaric acid, and ferulic acid. The bioactive compounds contained in propolis have anti-oxidant, anti-cancer, and anti-microbial activities, with various molecular mechanisms.
ABSTRAK
Propolis merupakan suatu produk sampingan yaitu zat resin yang dihasilkan oleh lebah madu yang berasal dari berbagai sumber tanaman. Sejak zaman dahulu, propolis sudah banyak digunakan untuk pengobatan tradisional sebagai obat pelengkap alternatif untuk berbagai penyakit akut maupun kronis. Seiring berkembangnya zaman, telah banyak dilakukan penelitian yang menguji efek dari propolis. Kajian pustaka ini bertujuan untuk dapat menggambarkan berbagai senyawa bioaktif yang terkandung dalam propolis dan bagaimana efek farmakologisnya secara molekuler. Penelusuran pustaka dilakukan menggunakan pangkalan data PubMed, dengan kata kunci “bioactive molecules”, “molecular mechanisms”, dan “propolis”. Dengan menggunakan kriteria eksklusi, yaitu artikel tidak menggunakan Bahasa Inggris, tidak diterbitkan pada rentang sepuluh tahun terakhir (2013-2023), kajian pustaka, dan studi klinik, didapatkan 171 artikel. Penyaringan ulang dilakukan dan didapatkan 28 artikel yang membahas mengenai senyawa aktif beserta mekanisme molekuler dari propolis. Hasil kajian pustaka menunjukkan bahwa kandungan senyawa bioaktif utama dalam propolis adalah polifenol, yaitu senyawa flavonoid, diantaranya krisin, galangin, pinosembrin, dan senyawa asam fenolik non-flavonoid yaitu asam kafeat, asam p-kumarat, dan asam ferulat. Senyawa bioaktif yang terkandung dalam propolis memiliki aktivitas antioksidan, antikanker, dan antimikroba, dengan berbagai mekanisme molekuler.
Keywords
Full Text:
PDFReferences
Abamor, E. S. (2017). Antileishmanial activities of caffeic acid phenethyl ester loaded PLGA nanoparticles against Leishmania infantum promastigotes and amastigotes in vitro. Asian Pacific Journal of Tropical Medicine, 10(1), 25–34. https://doi.org/10.1016/J.APJTM.2016.12.006
Altuntaş, A., Ylmaz, H. R., Altuntaş, A., Uz, E., Demir, M., Gökçimen, A., Aksu, O., Bayram, D. Ş., & Sezer, M. T. (2014). Caffeic acid phenethyl ester protects against amphotericin B induced nephrotoxicity in rat model. BioMed Research International, 2014. https://doi.org/10.1155/2014/702981
Araujo, M. A. R., Libério, S. A., Guerra, R. N. M., Ribeiro, M. N. S., & Nascimento, F. R. F. (2012). Mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of propolis: a brief review. Revista Brasileira de Farmacognosia, 22(1), 208–219. https://doi.org/10.1590/S0102-695X2011005000167
Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., Orhan, I. E., Banach, M., Rollinger, J. M., Barreca, D.,
Weckwerth, W., Bauer, R., Bayer, E. A., Majeed, M., Bishayee, A., Bochkov, V., Bonn, G. K., Braidy, N., Bucar, F., Cifuentes, A., D’Onofrio, G., Bodkin, M., … Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery 2021 20:3, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
Batista, L. L. V., Campesatto, E. A., De Assis, M. L. B., Barbosa, A. P. F., Grillo, L. A. M., & Dornelas,
C. B. (2012). Comparative study of topical green and red propolis in the repair of wounds induced in rats. Revista Do Colégio Brasileiro de Cirurgiões, 39(6), 515–520. https://doi.org/10.1590/S0100-69912012000600012
Cao, J., Wang, H., Chen, F., Fang, J., Xu, A., Xi, W., Zhang, S., Wu, G., & Wang, Z. (2016). Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma. Molecular Medicine Reports, 13(5), 4238–4244. https://doi.org/10.3892/MMR.2016.5042/HTML
Chien, S. T., Shi, M. Der, Lee, Y. C., Te, C. C., & Shih, Y. W. (2015). Galangin, a novel dietary flavonoid, attenuates metastatic feature via PKC/ERK signaling pathway in TPA-treated liver cancer HepG2 cells. Cancer Cell International, 15(1), 1–11. https://doi.org/10.1186/S12935-015- 0168-2/FIGURES/5
Chung, L. C., Chiang, K. C., Feng, T. H., Chang, K. S., Chuang, S. T., Chen, Y. J., Tsui, K. H., Lee, J. C., & Juang, H. H. (2017). Caffeic acid phenethyl ester upregulates N-myc downstream regulated gene 1 via ERK pathway to inhibit human oral cancer cell growth in vitro and in vivo. Molecular Nutrition & Food Research, 61(9), 1600842. https://doi.org/10.1002/MNFR.201600842
Collins, W., Lowen, N., & Blake, D. J. (2019). Caffeic Acid Esters Are Effective Bactericidal Compounds Against Paenibacillus larvae by Altering Intracellular Oxidant and Antioxidant Levels. Biomolecules 2019, Vol. 9, Page 312, 9(8), 312. https://doi.org/10.3390/BIOM9080312
Cornara, L., Biagi, M., Xiao, J., & Burlando, B. (2017). Therapeutic properties of bioactive compounds from different honeybee products. Frontiers in Pharmacology, 8(JUN), 412. https://doi.org/10.3389/FPHAR.2017.00412/BIBTEX
Cuevas, A., Saavedra, N., Salazar, L. A., & Abdalla, D. S. P. (2013). Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors. Nutrients 2013, Vol. 5, Pages 2314- 2332, 5(7), 2314–2332. https://doi.org/10.3390/NU5072314
Cushnie, T. P. T., & Lamb, A. J. (2006). Assessment of the antibacterial activity of galangin against 4- quinolone resistant strains of Staphylococcus aureus. Phytomedicine, 13(3), 187–191. https://doi.org/10.1016/J.PHYMED.2004.07.003
Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174–
https://doi.org/10.1016/J.COPBIO.2011.08.007
Das, J., Ramani, R., & Suraju, M. O. (2016). Polyphenol compounds and PKC signaling. Biochimica et Biophysica Acta (BBA) - General Subjects, 1860(10), 2107–2121. https://doi.org/10.1016/J.BBAGEN.2016.06.022
de Oliveira, M. R., Peres, A., Gama, C. S., & Bosco, S. M. D. (2017). Pinocembrin Provides Mitochondrial Protection by the Activation of the Erk1/2-Nrf2 Signaling Pathway in SH-SY5Y Neuroblastoma Cells Exposed to Paraquat. Molecular Neurobiology, 54(8), 6018–6031. https://doi.org/10.1007/S12035-016-0135-5/METRICS
Echeverría, J., Opazo, J., Mendoza, L., Urzúa, A., & Wilkens, M. (2017). Structure-Activity and Lipophilicity Relationships of Selected Antibacterial Natural Flavones and Flavanones of Chilean Flora. Molecules 2017, Vol. 22, Page 608, 22(4), 608.
https://doi.org/10.3390/MOLECULES22040608
Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2005). Toxic Metals and Oxidative Stress Part I: Mechanisms Involved in Me-tal induced Oxidative Damage. Current Topics in Medicinal Chemistry, 1(6), 529–539. https://doi.org/10.2174/1568026013394831
Farines, V., Monje, M. C., Telo, J. P., Hnawia, E., Sauvain, M., & Nepveu, F. (2004). Polyphenols as superoxide dismutase modulators and ligands for estrogen receptors. Analytica Chimica Acta, 513(1), 103–111. https://doi.org/10.1016/J.ACA.2003.08.065
Fu, B., Xue, J., Li, Z., Shi, X., Jiang, B. H., & Fang, J. (2007). Chrysin inhibits expression of hypoxia- inducible factor-1α through reducing hypoxia-inducible factor-1α stability and inhibiting its protein synthesis. Molecular Cancer Therapeutics, 6(1), 220–226. https://doi.org/10.1158/1535- 7163.MCT-06-0526
Fu, Q., Gao, Y., Zhao, H., Wang, Z., & Wang, J. (2018). Galangin protects human rheumatoid arthritis fibroblast-like synoviocytes via suppression of the NF-κB/NLRP3 pathway. Molecular Medicine Reports, 18(4), 3619–3624. https://doi.org/10.3892/MMR.2018.9422/HTML
Guang, H. M., & Du, G. H. (2006). Protections of pinocembrin on brain mitochondria contribute to cognitive improvement in chronic cerebral hypoperfused rats. European Journal of Pharmacology, 542(1–3), 77–83. https://doi.org/10.1016/J.EJPHAR.2006.04.054
Guang, H. M., Gao, M., Zhu, S. Y., He, X. L., He, G. R., Zhu, X. M., & Du, G. H. (2012). Effect of
pinocembrin on Mitochondrial function in Rats with Acute focal Cerebral Ischemia. Chin. Pharm. Bull, 28, 24–29.
Guo, L., Chen, X., Li, L. N., Tang, W., Pan, Y. T., & Kong, J. Q. (2016). Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering. Microbial Cell Factories, 15(1), 1–19. https://doi.org/10.1186/S12934-016 0424-8/TABLES/5
Hermenean, A., Mariasiu, T., Navarro-González, I., Vegara-Meseguer, J., Miuțescu, E., Chakraborty, S., & Pérez-Sánchez, H. (2017). Hepatoprotective activity of chrysin is mediated through TNF-α in chemically-induced acute liver damage: An in vivo study and molecular modeling. Experimental and Therapeutic Medicine, 13(5), 1671–1680.
https://doi.org/10.3892/ETM.2017.4181/HTML
Ho, C. C., Lin, S. S., Chou, M. Y., Chen, F. L., Hu, C. C., Chen, C. S., Lu, G. Y., & Yang, C. C. (2005).
Effects of CAPE-like compounds on HIV replication in vitro and modulation of cytokines in vivo.
Journal of Antimicrobial Chemotherapy, 56(2), 372–379. https://doi.org/10.1093/JAC/DKI244
Huang, S., Zhang, C. P., Wang, K., Li, G. Q., & Hu, F. L. (2014). Recent Advances in the Chemical
Composition of Propolis. Molecules 2014, Vol. 19, Pages 19610-19632, 19(12), 19610–19632. https://doi.org/10.3390/MOLECULES191219610
Kasprzak, M. M., Erxleben, A., & Ochocki, J. (2015). Properties and applications of flavonoid metal complexes. RSC Advances, 5(57), 45853–45877. https://doi.org/10.1039/C5RA05069C
Kim, H. H., Bae, Y., & Kim, S. H. (2013). Galangin attenuates mast cell-mediated allergic inflammation. Food and Chemical Toxicology, 57, 209–216. https://doi.org/10.1016/J.FCT.2013.03.015
Kim, H., Kim, W., Yum, S., Hong, S., Oh, J. E., Lee, J. W., Kwak, M. K., Park, E. J., Na, D. H., &
Jung, Y. (2013). Caffeic acid phenethyl ester activation of Nrf2 pathway is enhanced under oxidative state: Structural analysis and potential as a pathologically targeted therapeutic agent in treatment of colonic inflammation. Free Radical Biology and Medicine, 65, 552–562. https://doi.org/10.1016/J.FREERADBIOMED.2013.07.015
Kim, J. H., Kismali, G., & Gupta, S. C. (2018). Natural Products for the Prevention and Treatment of Chronic Inflammatory Diseases: Integrating Traditional Medicine into Modern Chronic Diseases Care. Evidence-Based Complementary and Alternative Medicine, 2018. https://doi.org/10.1155/2018/9837863
Kishimoto, N., Kakino, Y., Iwai, K., Mochida, K., & Fujita, T. (2005). In Vitro Antibacterial, Antimutagenic and Anti-Influenza Virus Activity of Caffeic Acid Phenethyl Esters. Biocontrol Science, 10(4), 155–161. https://doi.org/10.4265/BIO.10.155
Kuo, Y. Y., Lin, H. P., Huo, C., Su, L. C., Yang, J., Hsiao, P. H., Chiang, H. C., Chung, C. J., Wang,
H. D., Chang, J. Y., Chen, Y. W., & Chuu, C. P. (2013). Caffeic Acid Phenethyl Ester Suppresses Proliferation and Survival of TW2.6 Human Oral Cancer Cells via Inhibition of Akt Signaling. International Journal of Molecular Sciences 2013, Vol. 14, Pages 8801-8817, 14(5), 8801–8817. https://doi.org/10.3390/IJMS14058801
Lampiasi, N., & Montana, G. (2018). An in vitro inflammation model to study the Nrf2 and NF-κB crosstalk in presence of ferulic acid as modulator. Immunobiology, 223(4–5), 349–355. https://doi.org/10.1016/J.IMBIO.2017.10.046
Lan, X., Wang, W., Li, Q., & Wang, J. (2016). The Natural Flavonoid Pinocembrin: Molecular Targets and Potential Therapeutic Applications. Molecular Neurobiology, 53(3), 1794–1801. https://doi.org/10.1007/S12035-015-9125-2/METRICS
Lee, H. S., Lee, S. Y., Park, S. H., Lee, J. H., Ahn, S. K., Choi, Y. M., Choi, D. J., & Chang, J. H.
(2013). Antimicrobial medical sutures with caffeic acid phenethyl ester and their in vitro/in vivo biological assessment. MedChemComm, 4(5), 777–782. https://doi.org/10.1039/C2MD20289A
Lei, D., Zhang, F., Yao, D., Xiong, N., Jiang, X., & Zhao, H. (2018). Galangin increases ERK1/2 phosphorylation to decrease ADAM9 expression and prevents invasion in A172 glioma cells. Molecular Medicine Reports, 17(1), 667–673. https://doi.org/10.3892/MMR.2017.7920/HTML
Li, H. X., Wang, Z. C., Qian, Y. M., Yan, X. Q., Lu, Y. D., & Zhu, H. L. (2017). Design, synthesis, and biological evaluation of chrysin derivatives as potential FabH inhibitors. Chemical Biology & Drug Design, 89(1), 136–140. https://doi.org/10.1111/CBDD.12839
Li, Y., Cao, Z., & Zhu, H. (2006). Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. Pharmacological Research, 53(1), 6–15. https://doi.org/10.1016/J.PHRS.2005.08.002
Liang, Y., Feng, G., Wu, L., Zhong, S., Gao, X., Tong, Y., Cui, W., Qin, Y., Xu, W., Xiao, X., Zhang, Z., Huang, G., & Zhou, X. (2019). Caffeic acid phenethyl ester suppressed growth and metastasis of nasopharyngeal carcinoma cells by inactivating the NF-kB pathway. Drug Design, Development and Therapy, 13, 1335–1345. https://doi.org/10.2147/DDDT.S199182
Lili, L., Cui, H., Ma, Z., Liu, X., & Yang, L. (2021). Recent progresses in the pharmacological activities of caffeic acid phenethyl ester. Naunyn-Schmiedeberg’s Archives of Pharmacology 2021 394:7, 394(7), 1327–1339. https://doi.org/10.1007/S00210-021-02054-W
Lin, C. L., Chen, R. F., Chen, J. Y. F., Chu, Y. C., Wang, H. M., Chou, H. L., Chang, W. C., Fong, Y.,
Chang, W. T., Wu, C. Y., & Chiu, C. C. (2012). Protective Effect of Caffeic Acid on Paclitaxel Induced Anti-Proliferation and Apoptosis of Lung Cancer Cells Involves NF-κB Pathway. International Journal of Molecular Sciences 2012, Vol. 13, Pages 6236-6245, 13(5), 6236–6245. https://doi.org/10.3390/IJMS13056236
Lin, H. C., Tsai, S. H., Chen, C. S., Chang, Y. C., Lee, C. M., Lai, Z. Y., & Lin, C. M. (2008). Structure– activity relationship of coumarin derivatives on xanthine oxidase-inhibiting and free radical- scavenging activities. Biochemical Pharmacology, 75(6), 1416–1425. https://doi.org/10.1016/J.BCP.2007.11.023
Liu, R., Gao, M., Yang, Z. H., & Du, G. H. (2008). Pinocembrin protects rat brain against oxidation and apoptosis induced by ischemia–reperfusion both in vivo and in vitro. Brain Research, 1216, 104–115. https://doi.org/10.1016/J.BRAINRES.2008.03.049
Liu, R., Li, J. ze, Song, J. ke, Zhou, D., Huang, C., Bai, X. yu, Xie, T., Zhang, X., Li, Y. jie, Wu, C. xia, Zhang, L., Li, L., Zhang, T. tai, & Du, G. hua. (2014). Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits. Neurobiology of Aging, 35(6), 1275– 1285. https://doi.org/10.1016/J.NEUROBIOLAGING.2013.12.031
Liu, R., Wu, C. X., Zhou, D., Yang, F., Tian, S., Zhang, L., Zhang, T. T., & Du, G. H. (2012).
Pinocembrin protects against β-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrion-mediated apoptosis. BMC Medicine, 10(1), 1–21. https://doi.org/10.1186/1741- 7015-10-105/FIGURES/10
Lu, H., Yao, H., Zou, R., Chen, X., & Xu, H. (2019). Galangin Suppresses Renal Inflammation via the Inhibition of NF-B, PI3K/AKT and NLRP3 in Uric Acid Treated NRK-52E Tubular Epithelial Cells. BioMed Research International, 2019. https://doi.org/10.1155/2019/3018357
Mani, R., & Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 145, 187–196. https://doi.org/10.1016/J.PHYTOCHEM.2017.09.016
Min, J., Shen, H., Xi, W., Wang, Q., Yin, L., Zhang, Y., Yu, Y., Yang, Q., & Wang, Z. N. (2018). Synergistic Anticancer Activity of Combined Use of Caffeic Acid with Paclitaxel Enhances Apoptosis of Non-Small-Cell Lung Cancer H1299 Cells in Vivo and in Vitro. Cellular Physiology and Biochemistry, 48(4), 1433–1442. https://doi.org/10.1159/000492253
Mirza-Aghazadeh-Attari, M., Ekrami, E. M., Aghdas, S. A. M., Mihanfar, A., Hallaj, S., Yousefi, B., Safa, A., & Majidinia, M. (2020). Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sciences, 255, 117481.
https://doi.org/10.1016/J.LFS.2020.117481
Nardini, M., Scaccini, C., Packer, L., & Virgili, F. (2000). In vitro inhibition of the activity of phosphorylase kinase, protein kinase C and protein kinase A by caffeic acid and a procyanidin- rich pine bark (Pinus marittima) extract. Biochimica et Biophysica Acta (BBA) - General Subjects, 1474(2), 219–225. https://doi.org/10.1016/S0304-4165(00)00009-X
Navarro-Navarro, M., Ruiz-Bustos, P., Valencia, D., Robles-Zepeda, R., Ruiz-Bustos, E., Virués, C., Hernandez, J., Domínguez, Z., & Velazquez, C. (2013). Antibacterial Activity of Sonoran Propolis and Some of Its Constituents Against Clinically Significant Vibrio Species. Https://Home.Liebertpub.Com/Fpd, 10(2), 150–158. https://doi.org/10.1089/FPD.2012.1318
Niu, Y., Wang, K., Zheng, S., Wang, Y., Ren, Q., Li, H., Ding, L., Li, W., & Zhang, L. (2020). Antibacterial effect of caffeic acid phenethyl ester on cariogenic bacteria and streptococcus mutans biofilms. Antimicrobial Agents and Chemotherapy, 64(9). https://doi.org/10.1128/AAC.00251-20/ASSET/3B1DC8DE-EDA4-4C45-9C9C- 891072978EF5/ASSETS/GRAPHIC/AAC.00251-20-F0008.JPEG
O’Leary, K. A., De Pascual-Tereasa, S., Needs, P. W., Bao, Y. P., O’Brien, N. M., & Williamson, G. (2004). Effect of flavonoids and Vitamin E on cyclooxygenase-2 (COX-2) transcription. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 551(1–2), 245–254. https://doi.org/10.1016/J.MRFMMM.2004.01.015
Olgierd, B., Kamila, Ż., Anna, B., & Emilia, M. (2021). The Pluripotent Activities of Caffeic Acid Phenethyl Ester. Molecules 2021, Vol. 26, Page 1335, 26(5), 1335.
https://doi.org/10.3390/MOLECULES26051335
Onori, P., DeMorrow, S., Gaudio, E., Franchitto, A., Mancinelli, R., Venter, J., Kopriva, S., Ueno, Y., Alvaro, D., Savage, J., Alpini, G., & Francis, H. (2009). Caffeic acid phenethyl ester decreases cholangiocarcinoma growth by inhibition of NF-κB and induction of apoptosis. International Journal of Cancer, 125(3), 565–576. https://doi.org/10.1002/IJC.24271
Pepeljnjak, S., & Kosalec, I. (2004). Galangin expresses bactericidal activity against multiple-resistant bacteria: MRSA, Enterococcus spp. and Pseudomonas aeruginosa. FEMS Microbiology Letters, 240(1), 111–116. https://doi.org/10.1016/J.FEMSLE.2004.09.018
Rasul, A., Millimouno, F. M., Ali Eltayb, W., Ali, M., Li, J., & Li, X. (2013). Pinocembrin: A novel natural compound with versatile pharmacological and biological activities. BioMed Research International, 2013. https://doi.org/10.1155/2013/379850
Romana-Souza, B., dos Santos, J. S., & Monte-Alto-Costa, A. (2018). Caffeic acid phenethyl ester promotes wound healing of mice pressure ulcers affecting NF-κB, NOS2 and NRF2 expression. Life Sciences, 207, 158–165. https://doi.org/10.1016/J.LFS.2018.05.057
Sabitha, R., Nishi, K., Gunasekaran, V., Annamalai, G., Agilan, B., & Ganeshan, M. (2019). p- Coumaric acid ameliorates ethanol-induced kidney injury by inhibiting inflammatory cytokine production and NF-kB signaling in rats. Asian Pacific Journal of Tropical Biomedicine, 9(5), 188– 188.https://go.gale.com/ps/i.dop=HRCA&sw=w&issn=22211691&v=2.1&it=r&id=GALE%7CA58 7836414&sid=googleScholar&linkaccess=fulltext
Samarghandian, S., Afshari, J. T., & Davoodi, S. (2011). Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clinics, 66(6), 1073–1079. https://doi.org/10.1590/S1807-59322011000600026
Shen, H., Yamashita, A., Nakakoshi, M., Yokoe, H., Sudo, M., Kasai, H., Tanaka, T., Fujimoto, Y., Ikeda, M., Kato, N., Sakamoto, N., Shindo, H., Maekawa, S., Enomoto, N., Tsubuki, M., & Moriishi, K. (2013). Inhibitory Effects of Caffeic Acid Phenethyl Ester Derivatives on Replication of Hepatitis C Virus. PLOS ONE, 8(12), e82299. https://doi.org/10.1371/JOURNAL.PONE.0082299
Sorrenti, V., Raff aele, M., Vanella, L., Acquaviva, R., Salerno, L., Pittalà, V., Intagliata, S., & Di Giacomo, C. (2019). Protective Effects of Caffeic Acid Phenethyl Ester (CAPE) and Novel Cape Analogue as Inducers of Heme Oxygenase-1 in Streptozotocin-Induced Type 1 Diabetic Rats. International Journal of Molecular Sciences 2019, Vol. 20, Page 2441, 20(10), 2441. https://doi.org/10.3390/IJMS20102441
Sun, L., Hang, C., & Liao, K. (2018). Synergistic effect of caffeic acid phenethyl ester with caspofungin against Candida albicans is mediated by disrupting iron homeostasis. Food and Chemical Toxicology, 116, 51–58. https://doi.org/10.1016/J.FCT.2018.04.014
Sun, L., Liao, K., & Hang, C. (2018). Caffeic acid phenethyl ester synergistically enhances the antifungal activity of fluconazole against resistant Candida albicans. Phytomedicine, 40, 55–58. https://doi.org/10.1016/J.PHYMED.2017.12.033
Tundis, R., Frattaruolo, L., Carullo, G., Armentano, B., Badolato, M., Loizzo, M. R., Aiello, F., & Cappello, A. R. (2018). An ancient remedial repurposing: synthesis of new pinocembrin fatty acid acyl derivatives as potential antimicrobial/anti-inflammatory agents. Https://Doi.Org/10.1080/14786419.2018.1440224, 33(2), 162–168.
https://doi.org/10.1080/14786419.2018.1440224
Velazquez, C., Navarro, M., Acosta, A., Angulo, A., Dominguez, Z., Robles, R., Robles-Zepeda, R., Lugo, E., Goycoolea, F. M., Velazquez, E. F., Astiazaran, H., & Hernandez, J. (2007). Antibacterial and free‐ radical scavenging activities of Sonoran propolis. Journal of Applied Microbiology, 103(5), 1747–1756. https://doi.org/10.1111/J.1365-2672.2007.03409.X
Veloz, J. J., Alvear, M., & Salazar, L. A. (2019). Antimicrobial and Antibiofilm Activity against Streptococcus mutans of Individual and Mixtures of the Main Polyphenolic Compounds Found in Chilean Propolis. BioMed Research International, 2019. https://doi.org/10.1155/2019/7602343
Wang, J., Zhang, T., Du, J., Cui, S., Yang, F., & Jin, Q. (2014). Anti-Enterovirus 71 Effects of Chrysin and Its Phosphate Ester. PLOS ONE, 9(3), e89668. https://doi.org/10.1371/JOURNAL.PONE.0089668
Wang, W., Zheng, L., Xu, L., Tu, J., & Gu, X. (2020). Pinocembrin mitigates depressive-like behaviors induced by chronic unpredictable mild stress through ameliorating neuroinflammation and apoptosis. Molecular Medicine, 26(1), 1–11. https://doi.org/10.1186/S10020-020-00179- X/FIGURES/7
Xu, Y. X., Wang, B., & Zhao, X. H. (2017). In vitro effects and the related molecular mechanism of galangin and quercetin on human gastric cancer cell line (SGC-7901) - PubMed. Pakistan Journal of Pharmaceutical Sciences, 30(4), 1279–1287. https://pubmed.ncbi.nlm.nih.gov/29039326/
Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The Immunomodulatory and Anti- Inflammatory Role of Polyphenols. Nutrients 2018, Vol. 10, Page 1618, 10(11), 1618. https://doi.org/10.3390/NU10111618
Yang, B., Huang, J., Xiang, T., Yin, X., Luo, X., Huang, J., Luo, F., Li, H., Li, H., & Ren, G. (2014). Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. Journal of Applied Toxicology, 34(1), 105–112. https://doi.org/10.1002/JAT.2941
Yu, X. M., Phan, T., Patel, P. N., Jaskula-Sztul, R., & Chen, H. (2013). Chrysin activates Notch1 signaling and suppresses tumor growth of anaplastic thyroid carcinoma in vitro and in vivo. Cancer, 119(4), 774–781. https://doi.org/10.1002/CNCR.27742
Zhang, Z., Li, G., Szeto, S. S. W., Chong, C. M., Quan, Q., Huang, C., Cui, W., Guo, B., Wang, Y., Han, Y., Michael Siu, K. W., Yuen Lee, S. M., & Chu, I. K. (2015). Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radical Biology and Medicine, 84, 331–343. https://doi.org/10.1016/J.FREERADBIOMED.2015.02.030
Zheng, W., Tao, Z., Cai, L., Chen, C., Zhang, C., Wang, Q., Ying, X., Hu, W., & Chen, H. (2017). Chrysin Attenuates IL-1β-Induced Expression of Inflammatory Mediators by Suppressing NF-κB in Human Osteoarthritis Chondrocytes. Inflammation, 40(4), 1143–1154. https://doi.org/10.1007/S10753-017-0558-9/METRICS
Zheng, Y., Wan, G., Yang, B., Gu, X., & Lin, J. (2020). Cardioprotective natural compound pinocembrin attenuates acute ischemic myocardial injury via enhancing glycolysis. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/4850328
Zhou, L. T., Wang, K. J., Li, L., Li, H., & Geng, M. (2015). Pinocembrin inhibits lipopolysaccharide- induced inflammatory mediators production in BV2 microglial cells through suppression of PI3K/Akt/NF-κB pathway. European Journal of Pharmacology, 761, 211–216. https://doi.org/10.1016/J.EJPHAR.2015.06.003
Zhu, H., Liang, Q. H., Xiong, X. G., Wang, Y., Zhang, Z. H., Sun, M. J., Lu, X., & Wu, D. (2018).
Anti-Inflammatory Effects of p-Coumaric Acid, a Natural Compound of Oldenlandia diffusa, on Arthritis Model Rats. Evidence-Based Complementary and Alternative Medicine, 2018. https://doi.org/10.1155/2018/5198594
DOI: http://dx.doi.org/10.36465/jop.v5i3.1094
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Munir Alinu Mulki, Reza Pratama
p-ISSN: 2620-8563; e-ISSN: 2621-1521
Index: